Polyglutamine Expansion Mutation Yields a Pathological Epitope Linked to Nucleation of Protein Aggregate: Determinant of Huntington's Disease Onset

نویسندگان

  • Keizo Sugaya
  • Shiro Matsubara
  • Yasuhiro Kagamihara
  • Akihiro Kawata
  • Hideaki Hayashi
چکیده

Polyglutamine (polyQ) expansion mutation causes conformational, neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. These diseases are characterized by the aggregation of misfolded proteins, such as amyloid fibrils, which are toxic to cells. Amyloid fibrils are formed by a nucleated growth polymerization reaction. Unexpectedly, the critical nucleus of polyQ aggregation was found to be a monomer, suggesting that the rate-limiting nucleation process of polyQ aggregation involves the folding of mutated protein monomers. The monoclonal antibody 1C2 selectively recognizes expanded pathogenic and aggregate-prone glutamine repeats in polyQ diseases, including Huntington's disease (HD), as well as binding to polyleucine. We have therefore assayed the in vitro and in vivo aggregation kinetics of these monomeric proteins. We found that the repeat-length-dependent differences in aggregation lag times of variable lengths of polyQ and polyleucine tracts were consistently related to the integration of the length-dependent intensity of anti-1C2 signal on soluble monomers of these proteins. Surprisingly, the correlation between the aggregation lag times of polyQ tracts and the intensity of anti-1C2 signal on soluble monomers of huntingtin precisely reflected the repeat-length dependent age-of-onset of HD patients. These data suggest that the alterations in protein surface structure due to polyQ expansion mutation in soluble monomers of the mutated proteins act as an amyloid-precursor epitope. This, in turn, leads to nucleation, a key process in protein aggregation, thereby determining HD onset. These findings provide new insight into the gain-of-function mechanisms of polyQ diseases, in which polyQ expansion leads to nucleation rather than having toxic effects on the cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal-repeat-length polyglutamine peptides accelerate aggregation nucleation and cytotoxicity of expanded polyglutamine proteins.

The dependence of disease risk and age-of-onset on expanded CAG repeat length in diseases like Huntington's disease (HD) is well established and correlates with the repeat-length-dependent nucleation kinetics of polyglutamine (polyGln) aggregation. The wide variation in ages of onset among patients with the same repeat length, however, suggests a role for modifying factors. Here we describe the...

متن کامل

Pathogenesis of polyglutamine disorders: aggregation revisited.

Expansion of CAG trinucleotide repeats coding for polyglutamine in unrelated proteins causes at least nine late-onset progressive neurodegenerative disorders, including Huntington's disease and a number of spinocerebellar ataxias. Expanded polyglutamine provokes a dominant gain-of-function neurotoxicity, regardless of the specific protein context within which it resides. Nevertheless, the prote...

متن کامل

Pathological mechanisms in Huntington's disease and other polyglutamine expansion diseases.

HD is an autosomal dominant neurodegenerative disorder characterized by involuntary movements, cognitive impairment progressing to dementia, and mood disturbances. The brains of patients show extensive neuronal loss in the striatum, and the cerebral cortex is also affected. The genetic defect causing HD is an expansion of a CAG repeat encoding a polyglutamine stretch in the target protein, name...

متن کامل

The biological function of the Huntingtin protein and its relevance to Huntington's Disease pathology.

Huntington's Disease is an adult-onset dominant heritable disorder characterized by progressive psychiatric disruption, cognitive deficits, and loss of motor coordination. It is caused by expansion of a polyglutamine tract within the N-terminal domain of the Huntingtin protein. The mutation confers a toxic gain-of-function phenotype, resulting in neurodegeneration that is most severe in the str...

متن کامل

The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington's disease pathogenesis.

Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the protein huntingtin (htt). Pathogenesis in HD appears to involve the formation of ubiquitinated neuronal intranuclear inclusions containing N-terminal mutated htt, abnormal protein interactions, and the aggregate sequestration of a variety of proteins (noticeably, transcription factors). To identify...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007